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Transitions and instabilities of two-dimensional flow in a symmetric channel with
a suddenly expanded and contracted part are investigated numerically by three
different methods, i.e. the time marching method for dynamical equations, the SOR
iterative method and the finite-element method for steady-state equations. Linear
and weakly nonlinear stability theories are applied to the flow. The transitions are
confirmed experimentally by flow visualizations. It is known that the flow is steady
and symmetric at low Reynolds numbers, becomes asymmetric at a critical Reynolds
number, regains the symmetry at another critical Reynolds number and becomes
oscillatory at very large Reynolds numbers. Multiple stable steady-state solutions
are found in some cases, which lead to a hysteresis. The critical conditions for the
existence of the multiple stable steady-state solutions are determined numerically and
compared with the results of the linear and weakly nonlinear stability analyses. An
exchange of modes for oscillatory instabilities is found to occur in the flow as the
aspect ratio, the ratio of the length of the expanded part to its width, is varied, and
its relation with the impinging free-shear-layer instability (IFLSI) is discussed.

1. Introduction
Flow in a two-dimensional symmetric channel with a suddenly expanded and

contracted part is one of the simplest models that is not homogeneous in the
flow direction. Theoretical analyses were difficult for such a flow because of the
inhomogeneity. In particular, traditional stability theories for parallel flows could not
be easily applied to the flow. So, instabilities and transitions of the flow have been
investigated mainly by numerical methods and shown to include rich phenomena.

Transitions of flow in a symmetric channel with a sudden expansion have been
investigated extensively. This is a special case of the symmetric channel with a
suddenly expanded and contracted part. For instance, Durst, Melling & Whitelaw
(1974) and Cherdron, Durst & Whitelaw (1978) measured velocity profiles in detail
for the symmetric sudden expansion flow by laser-Doppler velocimetry (LDV) and
flow-visualization methods. It was found that the flow is symmetric at low Reynolds
numbers, but becomes asymmetric at higher Reynolds numbers. Oscillatory flows are
also observed at very high Reynolds numbers.

It was shown by Fearn, Mullin & Cliffe (1990) that the asymmetry arises at a
critical Reynolds number owing to a pitchfork bifurcation. They measured the degree
of asymmetry experimentally and compared it with their numerical results. The
coincidence of the experimental and numerical results was satisfactory except in the
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immediate vicinity of the bifurcation. They modelled the effect of small imperfections
in the flow channel numerically and clarified that the disconnection observed in the
experimental bifurcation diagram is due to small imperfections that are inevitably
present in the experimental apparatus.

Linear stability of the flow in the channel was studied by Alleborn et al. (1997), who
also made a systematic bifurcation analysis and obtained a bifurcation diagram of the
steady-state solutions including up to the third bifurcation points of the symmetric
flow.

Weakly nonlinear stability theory was successfully applied to the flow in the channel
by Mizushima & Shiotani (2000). They considered a slight asymmetric channel as an
imperfection of the system and derived an amplitude equation for a disturbance by
including the effect of the imperfection. The equilibrium amplitude of the disturbance
evaluated by the amplitude equation was shown to be in good agreement with the
experimental results by Fearn et al. (1990) for the flow in a symmetric channel that
is presumed symmetric.

Flows in a two-dimensional symmetric channel with a suddenly expanded and
contracted part were investigated by Mizushima, Okamoto & Yamaguchi (1996
hereinafter referred to as MOY). They made numerical simulations for the flow and
analysed the numerical data by applying the bifurcation theory. It was found that
the flow is steady and symmetric at low Reynolds numbers, becomes asymmetric at
a critical Reynolds number Rec1 owing to a symmetry-breaking pitchfork bifurcation
and regains the symmetry at Rec2(>Rec1) owing to another pitchfork bifurcation.
The symmetric flow was shown to become oscillatory at Rec3 owing to a Hopf
bifurcation. They evaluated the critical values of Rec1, Rec2 and Rec3, and obtained
a transition diagram of the flow. However, the bifurcation diagrams obtained were
incomplete because they included unexpected discontinuous lines in place of the
smooth continuous lines presumed.

In the present paper, we investigate transitions and instabilities of the flow in a
symmetric channel with a suddenly expanded and contracted part experimentally,
numerically and theoretically. We measure the velocity by LDV and examine the flow
patterns by flow visualizations in experiments, and use three different methods in
numerical calculations, i.e. the time marching method for dynamical equations, the
SOR iterative method and the finite-element method for steady-state equations. The
weakly nonlinear stability theory is applied to the flow to elucidate the bifurcation
structure near the critical Reynolds numbers for the pitchfork bifurcations. This
work is an extension of MOY. We focus our attention on multiple stable steady-state
solutions of the flow at relatively low Reynolds numbers, which lead to a hysteresis.
Our attention is also focused on the impinging free-shear-layer instability, which
makes the flow oscillatory. The impinging free-shear-layer instability is characterized
by a stepwise change of the Strouhal number with a continuous change of parameter
and observed when a jet-like stream impinges on an object with a corner edge
(Rockwell & Naudascher 1979).

2. Problem description
We consider a symmetric channel with a suddenly expanded and contracted part

as shown in figure 1. Flow comes in from the inlet AB of width h, enters the suddenly
expanded part DEJK through the sudden expansion LC, leaves it through the sudden
contraction IF and goes out from the outlet HG of width h. The expansion ratio E
is defined as E = EF/AB and is fixed as E = 3 in the present study. This case has
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Figure 1. Coordinates and geometry.

been investigated most extensively. The aspect ratio A is defined as

A = L0/3h = DE/KD (2.1)

where L0 is the length of the suddenly expanded part.
The mathematical formulation for the present problem is given in Mizushima &

Shiotani (2000), so we summarize it briefly. We assume an incompressible and two-
dimensional flow field. The governing equations for the velocity u = (u, v) and the
pressure p are the Navier–Stokes equation and the continuity equation. As the flow is
assumed to be two-dimensional, the stream function can be introduced. We adopt the
stream function ψ(x, y, t) and the vorticity ω(x, y, t) formulation except for numerical
calculations of unstable steady-state solutions by the finite-element method where
primitive variables u and p are used. The basic equations are the vorticity transport
and the Poisson equations for ω and ψ, which are written as

M
∂ψ

∂t
= Lψ + ReN(ψ, ψ), (2.2)

where M ≡ ∆, L ≡ ∆∆, N(f, g) ≡ J(f,∆g) and

∆ ≡ ∂2

∂x2
+

∂2

∂y2
, J(f, g) ≡ ∂f

∂x

∂g

∂y
− ∂f

∂y

∂g

∂x
.

All the variables are normalized by using the maximum inlet velocity Umax and the
half width 1

2
h of the inlet channel as representative velocity and lengthscales. The

time t is normalized by ν/U2
max and the Reynolds number is defined as

Re = Umaxh/2ν.

The boundary condition at AB (figure 1) is assumed as a fully developed plane
Poiseuille flow. The outlet condition at HG is

∂2ψ

∂x2
= 0,

∂2ω

∂x2
= 0, (2.3)

when the flow is steady. The Sommerfeld radiation condition is adopted for time-
periodic flows by using the convection equation at the outlet as

∂ψ

∂t
+ c

∂ψ

∂x
= 0,

∂ω

∂t
+ c

∂ω

∂x
= 0, (2.4)

where c is a phase velocity of outgoing waves. For the value of c, the outlet velocity
of u at each position on HG is used in the present study. The boundary conditions
on all the walls are the non-slip condition.

Steady-state solutions ψ(x, y) and ω(x, y) satisfy the steady-state vorticity transport
equation and the Poisson equation, which are obtained by dropping the time derivative
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term in (2.2) as

Lψ + ReN(ψ, ψ) = 0. (2.5)

It is known that there exist steady symmetric solutions for all values of Re. We adopt
the symmetric solution as the basic flow for the linear and weakly nonlinear stability
analyses.

Linear stability of the symmetric steady flow (ψ, ω) is investigated by adding a
disturbance (ψ′, ω′) to it. The linear stability equation is expressed as

λMψ̂ = Lψ̂ + ReN(ψ, ψ̂) + ReN(ψ̂, ψ), (2.6)

where the time dependence of the disturbance is assumed as ψ′ = ψ̂(x, y) exp (λt) and
ω′ = ω̂(x, y) exp (λt). The boundary conditions for (ψ̂, ω̂) at the inlet and the outlet
are

ψ̂ = 0,
∂ψ̂

∂x
= 0,

∂ω̂

∂x
= 0 on AB,

∂2ψ̂

∂x2
= 0,

∂2ω̂

∂x2
= 0 on HG.

The non-slip condition is adopted on all the wall boundaries. The complex linear
growth rate λ is found by solving equation (2.6) under the boundary conditions with
the SOR iterative method. The real part of λ, say λr, indicates the linear growth
rate of the disturbance. The Reynolds number Re at which λr=0 gives the critical
Reynolds number Rec. If the imaginary part of λ, say λi, is zero, the principle of the
exchange of stabilities is valid. Then, the eigenfunctions (ψ̂, ω̂) at the critical state are
real. It is known that the eigenfunction ψ̂ for the most unstable mode is symmetric
along the x-axis.

We consider the weakly nonlinear behaviour of the disturbance added to the
symmetric flow near the critical states of the pitchfork bifurcations. It is known
that there are two pitchfork bifurcation points for the flow in a symmetric channel
with a suddenly expanded and contracted part, where the symmetric flow becomes
asymmetric at Re = Rec1 and the asymmetric flow recovers its symmetry at Re = Rec2.
For the local bifurcation analysis near the critical state at Re & Rec1, we adopt ε,
defined by ε2 ≡ Re − Rec1 as a small parameter, where we denote Rec1 by Rec

hereinafter. We expand physical quantities such as ψ, ψ′ and t in ε as

ψ′ = εψ̃1 + ε2ψ̃2 + ε3ψ̃3 + · · · ,
ψ = ψ0 + ε2ψ1 + · · · ,
∂

∂t
=

∂

∂t0
+ ε2 ∂

∂t1
+ · · · . (2.7)

It is noted that the steady flow is also expanded in ε and that ψ0 = ψ(Rec) and
ψ1 = (∂ψ/∂Re)Re=Rec

.
The amplitude equation is obtained from the solvability condition for the third-

order equation of O(ε3) as

dv1

dt
= λ1(Re− Rec)v1 + λ2v1

3, (2.8)

where v1 is the velocity component in the y-direction at a representative point
P1 = (x1, y1) = (0.8, 0) (figure 1). The equilibrium amplitude v1 for the pitchfork
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bifurcation is evaluated from (2.8) as

v1 = ±
√
−λ1(Re− Rec)

λ2

, (2.9)

if λ1λ2(Re− Rec) < 0.

3. Numerical methods
3.1. Time-marching method

In numerical simulations by the time-marching method, an equally spaced mesh
system with ∆x = ∆y = 0.1 is used. The vorticity transport equation is solved by the
explicit Euler method with the first-order accuracy in time together with the second-
order accuracy of central finite difference in space. The time increments ∆t are chosen
as ∆t = 0.001 or ∆t = 0.0005. The Poisson equation is discretized by the second-order
central finite difference and solved by the SOR method, where the relaxation factor
ε is kept as ε = 1.5. The convergence of the SOR method is determined when the
maximum relative error reaches 10−5 and the steady-flow state is determined when the
stream function becomes time independent and the maximum relative error reaches
10−10.

3.2. SOR iterative method

Both the steady-state vorticity transport equation and the Poisson equation are solved
by the SOR iterative method to calculate steady-state solutions. Spatial derivatives
are approximated by the fourth-order finite differences. The relaxation factor ε for
the SOR method is determined by considering aspect ratios and Reynolds numbers
in the range 0.7 < ε < 1.0. The convergence of the SOR method is determined
when the maximum relative error reaches 10−10. In order to calculate unstable steady
symmetric solutions above a critical Reynolds number, the SOR method is used under
the symmetry condition along the centreline of the channel. This method is used also
for the numerical evaluation of the linear growth rate and the numerical calculations
in the weakly nonlinear stability analysis.

3.3. Finite-element method

The finite-element method is used to calculate the unstable steady-state asymmet-
ric solutions. The computational domain is divided by triangular elements in the
finite-element method. Primitive variables (u, v) and p are used for the numerical cal-
culations. The velocity components u and v are approximated by quadratic polynomial
expressions using six nodes in each element and the pressure p is approximated by a
linear function expression using three points. These expressions for u, v and p are sub-
stituted in the steady-state Navier–Stokes equation, and the continuity equation. The
boundary conditions for u, v and p are assumed to be the fully developed Poiseuille
flow at the inlet AB (figure 1), p = 0 at the outlet HG and the non-slip condition on
all the walls. The discretized equations are obtained by using the Galerkin method
and are solved numerically by using the Newton–Raphson method. The node number
used is 4163 and the element number is 1992 for A = 8

3
. The convergence of the

Newton–Raphson method is determined when the maximum relative error reaches
10−10.
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4. Experimental method
We examine the flow patterns experimentally by flow visualizations. In experiments,

water is supplied to the inlet section AB by a pump from a reservoir tank, enters the
suddenly expanded and contracted part, goes out from the outlet section HG and
comes back to the reservoir tank. The channel is made of transparent acrylic plates.
The width h of the inlet section is 5 mm and the channel depth is 12h which may
satisfy the assumption of a two-dimensional flow field (see figure 1). Both the lengths
of the inlet and outlet sections L1 and L2 are 550 mm. The flow was almost a fully
developed plane Poiseuille flow at the end of the inlet section. Our experiment was
carried out for two different aspect ratios such as A = 4

3
and A = 7

3
. Aluminium

powder is mixed with water for flow visualizations. The maximum inlet velocity Umax

is measured at the centre of the inlet AB by LDV. The velocity is controlled by six
valves between the tank and the inlet section and the range of the Reynolds number
was 0 − 1500. A sheet of light is thrown by a projector, and traces of reflected light
are taken as streamlines by a camera in flow visualizations.

5. Results
5.1. Transitions of the flow

Transitions of the flow for the case of A = 7
3

were investigated by MOY, so their results
are reviewed briefly in order to compare our experimental results with theirs. The flow
is steady and symmetric at low Reynolds number, becomes steady but asymmetric
at Rec1 = 47.7 owing to the pitchfork bifurcation and regains the symmetry at
Rec2 = 65.2 owing to the second pitchfork bifurcation for A = 7

3
. The steady symmetric

flow becomes oscillatory at Rec3 = 843 owing to the Hopf bifurcation.
As typical examples, we show numerical and experimental results for the flow

patterns at Re = 40, 58, 100 in figure 2(a–f), where figures 2(a), 2(c) and 2(e) are the
flow fields (stream lines) obtained numerically, and others experimentally. The flow is
steady and symmetric at Re = 40 (figures 2a and 2b). It has two recirculation vortices
with equal lengths in the suddenly expanded part. At Re = 58, the flow is steady
but asymmetric, bending to one sidewall in the expanded part (figures 2c and 2d).
The direction of the bend is determined by chance with an equal probability for two
directions. The flow becomes symmetric again having two large recirculation vortices
which extend in the full length of the expanded part at Re = 100 (figures 2e and 2f).
At Re = 900, the flow is periodic in time. A snapshot of the flow pattern at Re = 900
is depicted in figure 3. Circulation vortices generated at the sudden contraction move
up and down periodically (figure 3).

The bifurcation diagrams for A = 7
3

are reproduced in figures 4 and 5. The solid and
dashed lines indicate the stable and unstable solutions, respectively, in these figures.
The bifurcation diagram for the pitchfork bifurcations is shown in figure 4. We adopt
the velocity v1 in the y-direction at P1(x, y) = (0.8, 0) (figure 1) as a representative
value manifesting the magnitude of the asymmetry in figure 4. For Reynolds numbers
smaller than Rec1(= 47.7), there is only one stable steady solution with v1 = 0, where
the flow is symmetric. At Rec1, the line of v1 branches into three, which shows that
there appear two stable asymmetric solutions while the symmetric solution becomes
unstable. The two stable and one unstable solutions join into one stable solution at
Rec2(= 65.2), which shows the second pitchfork bifurcation.

The bifurcation diagram for the Hopf bifurcation is shown in figure 5. We adopt
an oscillation amplitude a of the velocity v2 at P2(x, y) = (17, 0) (figure 1) as a
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Figure 2. Flow patterns. A = 7
3
. (a), (b) Re = 40. (c), (d) Re = 58. (e), (f) Re = 100.

(a), (c), (e) Numerical results. (b), (d), (f) Flow visualizations.

representative value manifesting the magnitude of the amplitude of the oscillatory
flow in this figure. The steady-state solution is unique for Rec2 < Re < Rec3 as seen
from figure 5, which is a stable symmetric flow. The symmetric flow becomes unstable
and an oscillatory flow appears at Rec3 = 843 owing to the Hopf bifurcation.



362 J. Mizushima and Y. Shiotani

3

1
0

–1

–3

y

–6 0 14 20
x

Figure 3. A snapshot of the flow pattern. Re = 900. A = 7
3
. Numerical results.

0.03

0.02

0.01

0

–0.01

–0.02

–0.03

v1

40 50
Re

60 70

Rec1 Rec2

Figure 4. Bifurcation diagram. A = 7
3
. The velocity v1 against the Reynolds number Re. v1, the
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a, the oscillation amplitude of the velocity v at P2(x, y) = (17.0, 0.0).

The bifurcation diagram for A = 8
3

was shown to be different from that for A = 7
3

by MOY, but it was incomplete because the solution lines for v1 have discontinuities
in the place of the continuous lines presumed. MOY speculated that the jumps
occur because of the inverse pitchfork bifurcation. We confirm their speculation by
numerical calculations of unstable solutions, which was missing in MOY, by using
the finite-element method. We have calculated the steady solutions for A = 8

3
in detail

and obtained a more complete bifurcation diagram as shown in figure 6. The solid
and dashed lines indicate the stable and unstable steady-state solutions, respectively.
The symmetric unstable solutions AD with v1 = 0 were obtained by the SOR method
with the finite-difference approximation under the symmetry condition along the
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centreline, whereas the unstable solutions CD and C′D with v1 6= 0 were obtained by
the finite-element method. The first symmetry-breaking pitchfork bifurcation occurs
at A in figure 6, where the symmetric solution becomes unstable. The bifurcated
solutions are indicated by ABC and AB′C′. The asymmetric solution ABC and AB′C′
are stable, but make saddle node bifurcations at C and C′ (Re = Re′c2), respectively.
The asymmetric solutions CD and C′D are unstable and the symmetric solution DF
is stable. So, there are three stable solutions and two unstable solutions in the range
of Rec2 < Re < Re′c2. The critical values of the pitchfork and saddle node bifurcations
are evaluated numerically as Rec1 = 41.0, Re′c2 = 112 and Rec2 = 107, the former two
of which are in good agreement with those obtained by MOY, whereas Rec2 = 107
had not been obtained by them.

We can easily imagine from figure 6 that there occurs a hysteresis. If the Reynolds
number is increased from a small value, the symmetric solution bifurcates at A. The
bifurcated solution takes a route indicated by ABCEF or AB′C′EF. This shows that
the asymmetric flow indicated by ABC (or AB′C′) makes a transition from C to E
at Re = Re′c2. On the other hand, if the Reynolds number is decreased from a large
value, the symmetric flow FED becomes unstable at D, makes a transition to B (or
B′) at Re = Rec2 and takes a route indicated by BA (or B′A). Thus, the hysteresis
occurs in the range of Rec2 6 Re 6 Re′c2.

The flow patterns of the stable symmetric, the stable asymmetric and the unstable
asymmetric solutions at Re = 110 (Rec2 < 110 < Re′c2) are shown in figure 7. There
are two large recirculation vortices which extend in the full length of the expanded
part in the stable symmetric flow (figure 7a). The stable asymmetric flow (figure 7b)
bends much more than the unstable asymmetric flow (figure 7c) as seen also from
figure 6.

5.2. Linear and weakly nonlinear stabilities

We have evaluated the linear growth rate of the steady symmetric flow by solving
(2.6) under the appropriate boundary condition by the SOR iterative method. In the
SOR iterative method, we have assumed the linear growth rate λ as well as ψ and
ω as unknown variables, and imposed a normalization condition that the velocity v1

in the y-direction at P1 = (0.8, 0) is unity. The linear growth rate λ was obtained as
a real value, which means that the principle of the exchange of stabilities is valid in
the range of the Reynolds number investigated. The linear growth rate λ is depicted
for A = 7

3
in figure 8. Needless to say, the critical Reynolds numbers Rec1 and Rec2
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Figure 7. Flow patterns. Re = 110. A = 8
3
. (a) Stable symmetric flow. (b) Stable asymmetric flow.

(c) Unstable asymmetric flow.
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Figure 8. Linear growth rate λ against the Reynolds number Re. A = 7
3
.

agree with the values obtained by the bifurcation analysis of the numerical data. It is
seen that the symmetric flow is unstable in the range of Rec1 < Re < Rec2 and that it
is stable out of the range.

The weakly nonlinear stability theory is applied near the pitchfork bifurcation
points at Rec1 and Rec2. We evaluated the coefficients λ1 and λ2 in the amplitude
equation (2.8) numerically to compare the amplitude evaluated from it with the
numerical results of the steady-state solution. Values of the coefficients λ1 and λ2

obtained are shown in table 1, where the critical values Rec1 and Rec2 are also
tabulated for various values of A.

We depict the values of v1 evaluated from the equilibrium amplitude (2.9) by dotted
lines for A = 7

3
in figure 4 where the two dotted lines correspond to the bifurcated

solutions from Rec1 and Rec2, respectively. It is seen from figure 4 that there occur
supercritical pitchfork bifurcations at the critical Reynolds numbers Rec1 and Rec2

for A = 7
3
. The weakly nonlinear stability analysis is revealed to play an important

role in predicting a parameter region where multiple stable solutions exist although
the coincidences of the results of the weakly nonlinear stability analysis and the
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A Rec λ1 λ2

2.333(= 140/60) Rec1 = 47.7 1.681× 10−2 −1.825× 102

Rec2 = 65.5 −2.044× 10−2 −1.553× 102

2.417(= 145/60) Rec1 = 44.2 2.593× 10−2 −1.777× 10−2

Rec2 = 76.9 −3.932× 10−2 −4.804× 101

2.467(= 148/60) Rec1 = 43.2 2.898× 10−2 −1.673× 102

Rec2 = 82.9 −4.598× 10−2 6.674× 101

2.500(= 150/60) Rec1 = 42.7 3.074× 10−2 −1.636× 102

Rec2 = 86.8 −5.111× 10−2 1.579× 102

Table 1. Values of the coefficients λ1 and λ2 in the amplitude equation.
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Figure 9. Values of the coefficient λ2 in the amplitude equation against the aspect ratio A.

numerical results of the equilibrium solution are rather limited to the vicinity of the
critical Reynolds numbers in figure 4.

We found in the previous subsection that the bifurcation at Rec2 is a subcritical
pitchfork bifurcation for A = 8

3
. It means that the bifurcation changes from the

supercritical to the subcritical one between A = 7
3

and 8
3

as A increases. The change
of the bifurcation characteristic is indicated by the sign of the coefficient λ2 at Rec2

in the amplitude equation (2.9). We have evaluated the value of λ2 for various values
of A. The coefficient λ2 is plotted against the aspect ratio A in figure 9 where the
bifurcation at Rec2 is supercritical if λ2 < 0 or subcritical if λ2 > 0. It is seen that the
bifurcation characteristic changes at Ac1 = 2.44.

5.3. Transition diagram

We made numerical calculations of the steady-state and the time-periodic solutions
for various values of A and obtained a transition diagram as summarized in figure 10.
For A < Ac2 = 2.3, the flow does not experience any pitchfork bifurcations and makes
a transition from a steady symmetric flow to an oscillatory flow at Rec3 (line with
filled squares in figure 10). For A > Ac2, the flow undergoes a transition from a steady
symmetric flow to a steady asymmetric flow at Rec1 (line with filled circles) owing to
the symmetry-breaking pitchfork bifurcation, and becomes symmetric again at Rec2

(line with open circles). There are multiple stable solutions in the range between
Rec2 and Re′c2 for A > Ac1 (the region between two lines with open circles and filled
circles). So the hysteresis occurs in this range. The steady flow makes a transition
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Figure 11. Transition diagram for Hopf bifurcation Rec3. �, Mode 1; �, mode 2.

from the steady symmetric flow to an oscillatory flow owing to the Hopf bifurcation
at Re = Rec3 (line with filled squares).

5.4. Impinging free-shear-layer instability

The transition diagram from the steady symmetric flow to the oscillatory flow is
depicted in figure 11, which is an enlargement of figure 10. The neutral stability line
for Rec3 seems to consist of two distinct curves which intersect with each other at
A = Ac3 ∼ 2.1. It suggests to us the existence of two different instability modes, say
mode 1 and mode 2 (filled and open squares in figure 11). We expect an exchange of the
two instability modes at A = Ac3. In order to confirm our expectation, we investigate
the flow patterns of the disturbances. As typical examples of the two instability modes,
we show two flow fields at (A,Re) = (4

3
, 1150) and (A, Re) = ( 7

3
, 850) in figures 12 and

13, respectively. Figure 12(a) is a snapshot of the time-periodic flow at the moment
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Figure 12. Flow patterns of mode 1. A = 4
3
. Re = 1150. (a) Snapshot of time-periodic flow at the

moment when the velocity at P2(x, y) = (11.0, 0.0) has a maximum value. (b) Unstable symmetric
flow. (c) Disturbance.
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Figure 13. Flow patterns of mode 2. A = 7
3
. Re = 850. (a) Snapshot of time-periodic flow at the

moment when the velocity at P2(x, y) = (17.0, 0.0) has a maximum value. (b) Unstable symmetric
flow. (c) Disturbance.

when the velocity v2 at P2(11.0, 0) takes a maximum value for Re = 1150 and A = 4
3
.

Figure 12(b) shows an unstable symmetric solution at the same Reynolds number
obtained by assuming the symmetry. The disturbance is calculated by subtracting the
symmetric solution from the time-periodic solution as depicted in figure 12(c). The
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disturbance at Re = 850 for A = 7
3

is also calculated in a similar manner and flow
patterns of the time-periodic flow, an unstable symmetric solution and the disturbance
are depicted in figures 13(a)–13(c), respectively. The disturbance of flow patterns for
A = 4

3
has two sets of vortices, whereas the disturbance for A = 7

3
consists of three

sets of vortices. This difference between mode 1 and mode 2 shows the exchange of
the instability modes.

We expect an abrupt change of oscillation frequency at A = Ac3 corresponding
to the exchange of the instability modes. The Strouhal number St(≡ L0f/Umax),
where f is the frequency in the time-periodic flow, is evaluated from the numerical
data and is depicted in figure 14. In figure 14 the line with filled squares shows
mode 1 and the line with open squares shows mode 2. The Strouhal numbers of
mode 1 and mode 2 have almost a linear dependence on the aspect ratio A except
at A = Ac3, respectively. The Strouhal number changes stepwise at A = Ac3 ∼ 2.1,
where the exchange of the instability modes occurs. The instability where Strouhal
number changes stepwise with a continuous change of parameter is characteristic of
the impinging free-shear-layer instability (IFSLI). Such an instability occurs when a
jet-like stream impinges on an object which has a corner edge. This instability occurs
in the channel under consideration here because the inlet flow impinges on the corners
of the sudden contraction. We conclude that the mechanism of the stepwise change of
St in the impinging free-shear-layer instability lies in the exchange of such instability
modes.

6. Conclusions
We have investigated transitions and instabilities of two-dimensional flow in a

symmetric channel with a suddenly expanded part theoretically and experimentally
as an extension of the work by Mizushima et al. (1996).

We obtained a more complete bifurcation diagram than MOY by calculating
unstable asymmetric solutions by the finite-element method. The unstable asymmetric
solutions were missing in MOY. Linear and weakly nonlinear stability theories were
successfully applied to the flow and it was shown that the second pitchfork bifurcation
at Re = Rec2 changes from a supercritical to a subcritical bifurcation at A = Ac1 =
2.44. The hysteresis was shown to occur in the range of Rec2 6 Re 6 Re′c2, where two
stable and two unstable asymmetric solutions and a stable symmetric solution exist.
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The neutral stability line for Rec3 was shown to consist of two distinct curves
which intersect each other at A = Ac3 ∼ 2.1. We have found an exchange of the
two instability modes at A = Ac3 ∼ 2.1. The Strouhal number St changes stepwise at
A = Ac3 ∼ 2.1, where the exchange of the instability modes occurs. The mechanism
of the stepwise change of St in the impinging free-shear-layer instability (IFSLI) was
revealed as a result of the exchange of the instability modes.
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